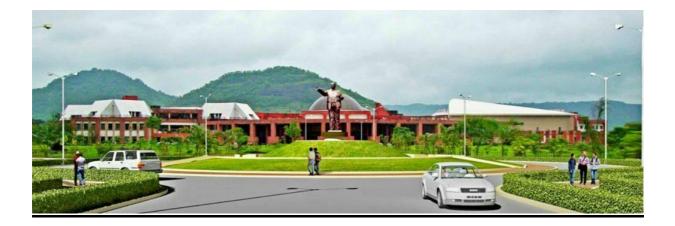
Dr. Babasaheb Ambedkar Technological University (Established a University of Technology in the State of Maharashtra) (under Maharashtra Act No. XXIX of 2014)

P.O. Lonere, Dist. Raigad, Pin 402 103,

Maharashtra Telephone and Fax. 02140 - 275142 www.dbatu.ac.in

www.dbatu.ac.in

PROPOSED CURRICULUM UNDER


GRADUATE PROGRAMME

B. TECH

ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Second Year

WITH EFFECT FROM THE ACADEMIC YEAR 2021-2022

Rules and Regulations

1. The normal duration of the course leading to B. Tech degree will be EIGHT semesters.

2. The normal duration of the course leading to M. Tech. degree will be FOUR semesters.

3. Each academic year shall be divided into 2 semesters, each of 20 weeks duration, including evaluation and grade finalization, etc. The Academic Session in each semester shall provide for at least 90 Teaching Days, with at least 40 hours of teaching contact periods in a five to six days session per week. The semester that is typically from Mid-July to November is called the ODD SEMESTER, and the one that is from January to Mid-May is called the EVEN SEMESTER. Academic Session may be scheduled for the Summer Session/Semester as well. For 1st year B. Tech and M. Tech the schedule will be decided as per the admission schedule declared by Government of Maharashtra.

4. The schedule of academic activities for a Semester, including the dates of registration, mid-semester examination, end- semester examination, inter-semester vacation, etc. shall be referred to as the Academic Calendar of the Semester, which shall be prepared by the Dean (Academic), and announced at least TWO weeks before the Closing Date of the previous Semester.

5. The Academic Calendar must be strictly adhered to, and all other activities including cocurricular and/or extra -curricular activities must be scheduled so as not to interfere with the Curricular Activities as stipulated in the Academic Calendar.

REGISTRATION:

1. Lower and Upper Limits for Course Credits Registered in a Semester, by a Full-Time Student of a UG/PG Programme: A full time student of a particular UG/PG programme shall register for the appropriate number of course credits in each semester/session that is within the minimum and maximum limits specific to that UG/PG programme as stipulated in the specific Regulations pertaining to that UG/PG programme.

2. Mandatory Pre-Registration for higher semesters: In order to facilitate proper planning of the academic activities of a semester, it is essential for the every institute to inform to Dean (Academics) and COE regarding details of total no. of electives offered (Course-wise) along with the number of students opted for the same. This information should be submitted within two weeks from the date of commencement of the semester as per academic calendar.

3. PhD students can register for any of PG/PhD courses and the corresponding rules of evaluation will apply.

4. Under Graduate students may be permitted to register for a few selected Post Graduate courses, in exceptionally rare circumstances, only if the DUGC/DPGC is convinced of the level of the academic achievement and the potential in a student.

Course Pre-Requisites:

1. In order to register for some courses, it may be required either to have exposure in, or to have completed satisfactorily, or to have prior earned credits in, some specified courses.

2. Students who do not register on the day announced for the purpose may be permitted LATE REGISTRATION up to the notified day in academic calendar on payment of late fee.

3. REGISTRATION IN ABSENTIA will be allowed only in exceptional cases with the approval of the Dean (Academic) / Principal.

4. A student will be permitted to register in the next semester only if he fulfills the following conditions:

(a) Satisfied all the Academic Requirements to continue with the programme of Studies without termination

(b) Cleared all Institute, Hostel and Library dues and fines (if any) of the previous semesters;

- (c) Paid all required advance payments of the Institute and hostel for the current semester;
- (d) Not been debarred from registering on any specific ground by the Institute.

EVALUATION SYSTEM:

1. Absolute grading system based on absolute marks as indicated below will be implemented from academic year 2020-21, starting from I year B. Tech.

	0	
Percentage	Letter	Grade
of Marks	Grade	Point
91-100	EX	10.0
86-90	AA	9.0
81-85	AB	8.5
76-80	BB	8.0
71-75	BC	7.5
66-70	CC	7.0
61-65	CD	6.5
56-60	DD	6.0
51-55	DE	5.5
40-50	EE	5.0
<40	EF	0.0

2. Class is awarded based on CGPA of all eight semester of B. Tech Program.

CGPA for pas	CGPA for pass is minimum 5.0								
CGPA upto < 5.50	Pass class								
CGPA ≥ 5.50 & <	Second Class								
6.00									
CGPA ≥ 6.00 & <	First Class								
7.50									
$CGPA \ge 7.50$	Distinction								
[Percentage of N	Marks =CGPA*10.0]								

3. A total of 100 Marks for each theory course are distributed as follows:

1	Mid Semester Exam (MSE) Marks	20
2	Continuous Assessment Marks	20
3	End Semester Examination (ESE) Marks	60

4. A total of 100 Marks for each practical course are distributed as follows:

1.	Continuous Assessment Marks						
2.	End Semester Examination (ESE)Marks	40					

It is mandatory for every student of B. Tech to score a minimum of 40 marks out of 100, with a minimum of 20 marks out of 60 marks in End Semester Examination for theory course.

This will be implemented from the first year of B. Tech starting from Academic Year 2020-21.

5. Description of Grades:

EX Grade: An 'EX' grade stands for outstanding achievement.

EE Grade: The 'EE' grade stands for minimum passing grade.

The students may appear for the remedial examination for the subjects he/she failed for the current semester of admission only and his/her performance will be awarded with EE grade only. If any of the student remain **absent** for the regular examination due to genuine reason and the same will be verified and tested by the Dean (Academics) or committee constituted by the University Authority.

FF Grade: The 'FF' grade denotes very poor performance, i.e. failure in a course due to poor performance .The students who have been awarded 'FF' grade in a course in any semester must repeat the subject in next semester.

6. Evaluation of Performance:

6.1. Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA)

(A) Semester Grade Point Average (SGPA) The performance of a student in a semester is indicated by Semester Grade Point Average (SGPA) which is a weighted average of the grade points obtained in all the courses taken by the student in the semester and scaled to a maximum of 10. (SGPI is to be calculated up to two decimal places). A Semester Grade Point Average (SGPA) will be computed for each semester as follows:

Where

'n' is the number of subjects for the semester,

'ci' is the number of credits allotted to a particular subject, and

'gi' is the grade-points awarded to the student for the subject based on his performance as per the above table.

-SGPA will be rounded off to the second place of decimal and recorded as such.

(B) Cumulative Grade Point Average (CGPA): An up to date assessment of the overall performance of a student from the time he entered the Institute is obtained by calculating Cumulative Grade Point Average (CGPA) of a student. The CGPA is weighted average of the grade points obtained in all the courses registered by the student since s/he

entered the Institute. CGPA is also calculated at the end of every semester (upto two decimal places).Starting from the first semester at the end of each semester (S), a Cumulative Grade Point Average (CGPA) will be computed as follows:

Where

'm' is the total number of subjects from the first semester onwards up to and including the semester S,

'ci' is the number of credits allotted to a particular subject, and

'gi' is the grade-points awarded to the student for the subject based on his/her performance as per the above table.

#CGPA will be rounded off to the second place of decimal and recorded as such.

Award of Degree of Honours

Major Degree

The concept of Major and Minors at B. Tech level is introduced ,to enhance learning skills of students, acquisition of additional knowledge in domains other than the discipline being pursued by the student, to make the students better employable with additional knowledge and encourage students to pursue cross-discipline research.

A. <u>Eligibility Criteria for Majors</u>

- 1. The Student should have Minimum CGPA of 7.5 up to 4th Semester
- 2. Student willing to opt for majors has to register at the beginning of 5th Semester
- 3. The Student has to complete 5 additional advanced courses from the same discipline specified in the curriculum. These five courses should be of 4 credits each amounting to 20 credits. The students should complete these credits before the end of last semester.
- 4. Student may opt for the courses from NPTEL/ SWAYAM platform. (if the credits of NPTEL/ SWAYAM courses do not match with the existing subject proper scaling will be done)

Student complying with these criteria will be awarded B. Tech (Honors) Degree.

B. <u>Eligibility Criteria for Minors</u>

- 1. The Student should have Minimum CGPA of 7.5 up to 4th Semester
- 2. Student willing to opt for minors has to register at the beginning of 5th Semester
- 3. The Student has to complete 5 additional courses from other discipline of their interest, which are specified in the respective discipline. These five courses should be of 4 credits each amounting to 20 credits.
- 4. Student may opt for the courses from NPTEL/ SWAYAM platform. (if the credits of NPTEL/ SWAYAM courses do not match with the existing subject proper scaling will be done)

Student complying with these criteria will be awarded with B. Tech Degree in ------Engineering with Minor in ------ Engineering. (For e.g.: B. Tech in Artificial Intelligence & Data Science with Minor in Computer Engineering).

For applying for Honors and Minor Degree the student has to register themselves through the proper system.

ATTENDANCE REQUIREMENTS:

1. All students must attend every lecture, tutorial and practical classes.

2. To account for approved leave of absence (e.g. representing the Institute in sports, games or athletics; placement activities; NCC/NSS activities; etc.) and/or any other such contingencies like Medical emergencies, etc., the attendance requirement shall be a minimum of 75% of the classes actually conducted.

- a) If the student failed to maintain 75% attendance, he/she will be detained for appearing the successive examination.
- b) The Dean (Academics)/ Principal is permitted to give 10% concession for the genuine reasons as such the case may be.
- c) In any case the student will not be permitted for appearing the examination if the attendance is less than 65%.

3. The course instructor handling a course must finalize the attendance 3 calendar days before the last day of classes in the current semester and communicate clearly to the students by displaying prominently in the department and also in report writing to the head of the department concerned.

4. The attendance records are to be maintained by the course instructor and he shall show it to the student, if and when required.

TRANSFER OF CREDITS

The courses credited elsewhere, in Indian or foreign University/Institutions/ Colleges/ Swayam Courses by students during their study period at DBATU may count towards the credit requirements for the award of degree. The guidelines for such transfer of credits are as follows:

- a) 20 % of the total credit will be considered for respective calculations.
- b) Credits transferred will be considered for overall credits requirements of the programme.
- c) Credits transfer can be considered only for the course at same level i. e UG, PG etc.

d) A student must provide all details (original or attested authentic copies)such as course contents, number of contact hours, course instructor /project guide and evaluation system for the course for which he is requesting a credits transfer. He shall also provide the approval or acceptance letter from the other side. These details will be evaluated by the concerned Board of Studies before giving approval. The Board of Studies will then decide the number of equivalent credits the student will get for such course(s) in DBATU. The complete details will then be forwarded to Dean for approval.

e) A student has to get minimum passing grades/ marks for such courses for which the credits transfers are to be made.

f) Credits transfers availed by a student shall be properly recorded on academic record(s) of the student.

g) In exceptional cases, the students may opt for higher credits than the prescribed.

Suggested Plan of Study

Sr.	III	IV	V V	VI	VII	VIII
No.		1 •	•	•1	VII	V 111
1	Engineering Mathematics-III	Probability Theory and Random Processes	Artificial Intelligence (Knowledge Representation and Reasoning) and its tools	Deep Learning & Neural Network	Natural Language Processing	-
2	An Introduction to Artificial Intelligence	Data Analysis	Machine Learning	Data Engineering (Data Modeling & Visualization)	Web Development Framework	-
3	Programming, Data Structure and Algorithm	Database Management System	Software Engineering & Testing	Professional Ethics and Values	Universal Human Value & Ethics	-
			Open Elective Course (OEC) - I	Open Elective Course (OEC) - II	Open Elective Course (OEC) - III	
		Image	1. Cloud Computing	1. Pattern Recognition	1. Modern Application Development in AI	
4	+ Signal Con	Processing & Computer Vision	2. Human Computer Interface	2. Information Retrieval	2. Quantum AI	-
		ignal Computer Computer		3. Project Design & Management	3. Intellectual Property Right	
			4. Soft Computing	4. Advance Machine Learning	4. Recommendation System	
		Professional Elective Courses -I	Professional Elective Course (PEC) -II	Professional Elective Course (PEC) -III	Professional Elective Course (PEC) -IV	
		1. Internet of Things & Embedded System	1. Sensors & Robotics Technology	1. Industry 4.0 & Automation	1. Autonomous Vehicle	
5	Building Essential Language and Life Skills	2. Computer Architecture& Operating System	2. Data Warehouse & Data Mining	2. Big Data Analytics	2. AI with Hadoop 3. Big Data Framework (Apache Hadoop, Hive, Spark)	-
		3. Cryptography and Network Security	3. Cyber Security	3. Blockchain Technology		
		4. Programming in JAVA	4. Theory of Computing	4. Virtual and Augmented Reality	4. GPU Programming	

Degree Requirements:

Total Credits: 160

Sr. No	Category	Suggested Breakup of Credits by AICTE	Credits awarded to First year	Credits awarded to Second year to Final Year	Total
1	Humanities and Social Sciences including Management courses	12*	3	9	12
2	Basic Science courses	25*	18	8	26
3	Engineering Science courses including workshop, drawing, basics of electrical/mechanical/computer etc.	24*	15	4	19
4	Professional core courses	48*	0	57	57
5	Professional Elective courses relevant to chosen specialization/branch	18*	0	15	15
6	Open subjects – Electives from other technical and /or emerging subjects	18*	0	12	12
7	Project work, seminar and internship in industry or elsewhere	15*	1	18	19
8	Mandatory Courses [Environmental Sciences, Induction training, Indian Constitution, Essence of Indian Knowledge Tradition]	NC			
	Total	160*	37	123	160

*Minor variation is allowed as per need of the respective disciplines.

Program Educational Objectives and Outcomes

A. Program Educational Objectives (PEOs)

Graduates will able to-

1.To equip graduates with a strong foundation in engineering sciences and Artificial Intelligence and Data Science Engineering fundamentals to become effective collaborators, researchers and real-time problem solver with technical competencies.

2.Perceive the limitation and impact of engineering solutions in social, legal, environmental, economic and multidisciplinary contexts.

3.Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting global competitiveness.

B. Program Outcomes

Engineering Graduate will be able to –

1.**Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2.**Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3.**Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4.**Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5.**Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6.**The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7.**Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8.**Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9.**Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

C. Program Specific Outcomes (PSOs)

- 1. Apply the fundamentals of science, mathematics and engineering knowledge to design, development, formulates and investigate complex engineering problems related to application area in Artificial Intelligence and Data Science.
- 2. Provide exposure to latest tools and technologies and aware of the impact of professional engineering solution in environmental, societal, professional ethics and able to communicate effectively.
- 3. To publish research paper and think, innovates in artificial intelligence, machine Learning and Data Science domain.

Course Structure for Second Year

B. Tech in Artificial Intelligence & Data Science / B. Tech. in Artificial Intelligence & Data Science

		Semester	III (Ter	·m 3))				
Course Category	Course	Course Title	Teaching Scheme			Evaluation Scheme				
Category	Code		L	Τ	Р	CA	MSE	ESE	Total	Credit
BSC	BTSE301	Engineering Mathematics-III	3	1	-	20	20	60	100	4
PCC1	BTSE302	An Introduction to Artificial Intelligence	3	1	-	20	20	60	100	4
PCC2	BTSE303	Programming, Data Structure and Algorithm	3	1	-	20	20	60	100	4
ESC	BTSE304	Digital Logic & Signal Processing		1	-	20	20	60	100	4
HSSMC	BTSE305	Building Essential Language and Life Skills		-	-	20	20	60	100	2
LC	BTSE306	An Introduction to Artificial Intelligence Lab		-	2	60	-	40	100	1
LC	BTSE307	Programming, Data Structure and Algorithm Lab		-	2	60	-	40	100	1
Seminar	BTSE308	Seminar-I	-	-	4	30	-	20	50	2
Internship	BTSE309	Internship -I	-	-	-	-	-	-	-	Audit
			15	4	6	250	100	400	750	22

Course Structure for Second Year

B. Tech in Artificial Intelligence & Data Science / B. Tech. in Artificial Intelligence & Data Science

		Semeste	r IV	(Te	rm 4	4)				
Course Catego	Course Code	Course Title		Teaching Scheme			Evaluation Scheme			
ry	Cour		L	Τ	P	CA	MSE	ESE	Total	Credit
BSC	BTSE401	Probability Theory and Random Processes	3	1	-	20	20	60	100	4
PCC3	BTSE402	Data Analysis	3	1	-	20	20	60	100	4
PCC4	BTSE403	Database Management System	3	1	-	20	20	60	100	4
PCC5	BTSE404	Image Processing & Computer Vision	3	-	-	20	20	60	100	3
	BTSE405	Professional Elective Courses –I		-		20				
В	BTSE405A	1. Internet of Things & Embedded System					20	60	100	
PEC-1	BTSE405B	2. Computer Architecture& Operating System	3		-					3
	BTSE405C	3. Cryptography and Network Security								
	BTSE405D	4. Programming in JAVA								
LC	BTSE406	Data Analysis Lab	-	-	2	30	-	20	50	1
LC	BTSE407	Database Management System Lab	-	-	2	30	-	20	50	1
LC	BTSE408	Image Processing & Computer Vision Lab	-	-	2	30	-	20	50	1
PROJ	BTSE409	Project Based Learning (PBL) –I		-	2	60	-	40	100	1
Internsh ip	BTSE410	Internship -II	-	-	-	-	-	-	-	Audit
			15	3	8	250	100	400	750	22

Course Structure for Third Year

		Seme	ster V	V (Teri	m 5)					
C	Commo		1	Teachin	g			Evalua	ation	
Course Category	Course	Course Title		Scheme	e	Sche	eme			
Category	Code		L	Τ	Р	CA	MSE	ESE	Total	Credit
PCC6	BTTE501	Artificial Intelligence (Knowledge Representation and Reasoning) and its tools	3	1	-	20	20	60	100	4
PCC7	BTTE502	Machine Learning	3	1	-	20	20	60	100	4
PCC8	BTTE503	Software Engineering and Testing	3	-	-	20	20	60	100	3
	BTTE504	Professional Elective Course (PEC) -II								
PEC-2 BTTE50	BTTE504A	1. Sensors & Robotics Technology		-	2	20	20	0 60 100	100	
	BTTE504B	2. Data Warehouse & Data Mining	3							4
	BTTE504C	3. Cyber Security								
	BTTE504D	4. Theory of Computation								
	BTTE505	Open Elective Course (OEC) - I								
	BTTE505A	1. Cloud Computing								
OEC-1	BTTE505B	2. Human Computer Interface	3	-	2	20	20	60	100	4
	BTTE505C	3. Enterprise Architecture & Component								
	BTTE505D	4. Soft Computation								
LC	BTTE506	Machine Learning Lab	-	-	2	30	-	20	50	1
LC	BTTE507	Software Engineering and Testing Lab	-	-	2	30	-	20	50	1
PROJ	BTTE508	Project Based Learning (PBL) –II	-	-	2	60	-	40	100	1
HSSMC	BTTE509	Corporates and Business Skill	-	1	-	50	-	-	50	1
Internship	BTTE510	Industrial Internship-I	-	-	-	-	-	-	-	Audit
			15	3	10	270	100	380	750	23

B. Tech in Artificial Intelligence & Data Science / B. Tech. in Artificial Intelligence & Data Science

Course Structure for Third Year

B. Tech in Artificial Intelligence & Data Science / B. Tech. in Artificial Intelligence & Data Science

		Semester	• VI (Tern	n 6)						
Course Category	Course Code	Course Title		achii chem	U	Kyaluation Scheme					
Category	Coue		L	Т	P	CA	MSE	ESE	Total	Credit	
PCC9	BTTE601	Deep Learning & Neural Network	3	1	-	20	20	60	100	4	
PCC10	BTTE602	Data Engineering (Data Modeling & Visualization)	3	1	-	20	20	60	100	4	
	BTTE603	Professional Elective Course (PEC) -III									
PEC-3	BTTE603A	1. Industry 4.0 & Automation			2	20	20	60 10		100	4
PEC-5	BTTE603B	2. Big Data Analytics	3	-	2	20	20		100	4	
	BTTE603C	3. Blockchain Technology									
	BTTE603D	4. Virtual and Augmented Reality									
	BTTE604	Open Elective Course (OEC) - II							100		
	BTTE604A	1. Pattern Recognition				20		60			
OEC-2	BTTE604B	2. Information Retrieval	3	-	2		20			4	
010 2	BTTE604C	3. Project Design & Management									
	BTTE604D	4. Advance Machine Learning									
HSSMC	BTTE605	Professional Ethics and Values	3		-	20	20	60	100	3	
LC	BTTE606	Deep Learning & Neural Network Lab	-	-	2	60	-	40	100	1	
LC	BTTE607	Data Engineering Lab	-	-	2	60	-	40	100	1	
PROJ	BTTE608	Project Based Learning (PBL) -IV	-	-	2	30	-	20	50	1	
Internship	BTTE609	Industrial Internship-II	-	-	-	-	-	-	-	Audit	
			15	2	10	250	100	400	750	22	

Course Structure for Final Year

		ntelligence & Data Science / B. 3 Semeste					genee a	Dutu Be	ience	
Course Category	Course Code	Course Title	Sch				Evalua		r	
	couc		L	Τ	P	CA	MSE	ESE	Total	Credit
PCC11	BTBE701	Natural Language Processing	3	1	-	20	20	60	100	4
PCC12	BTBE702	Web Development Framework	3	1	-	20	20	60	100	4
	BTBE703	Professional Elective Course (PEC) -IV								
	BTBE703A	1. Autonomous Vehicle					20 60			
PEC-4	BTBE703B	2. AI with Hadoop	3	-	2	20		60	100	4
	BTBE703C	3. Apache Spark & Scala								
	BTBE703D	4. Recommendation System								
	BTBE704	Open Elective Course (OEC) - III							100	l
	BTBE704A	1. Modern Application Development in AI				20	20	(0)		
OEC-3	BTBE704B	2. Quantum AI	3	-	2	20	20	60	100	4
	BTBE704C	3. Intellectual Property Right								
	BTBE704D	4. GPU Programming							100 100 100 100 50 50 150 -	
HSSMC	BTBE705	Universal Human Value & Ethics	3	-	-	20	20	60	100	3
LC	BTBE706	Natural Language Processing Lab	-	-	2	30	-	20	50	1
LC	BTBE707	Web Development Framework Lab	-	-	2	30	-	20	50	1
PROJ	BTBE708	Mini Project	-	-	2	50	-	100	150	1
Internship	BTBE709	Industrial Internship-III	-	-	-	-	-	-	-	Audit
			15	2	10	210	100	440	750	22

B. Tech in Artificial Intelligence & Data Science / B. Tech. in Artificial Intelligence & Data Science

	Semester VIII (Term 8)										
Course	Couse	Course Title	Teachin	ig Schem	e	Evaluation Scheme					
Category	Code	Course Title	L	Т	Р	CA	MSE	ESE	Total	Credit	
Project/ Internship	BTBE801	Project Work/ Internship	-	-	24	60	-	40	100	12	
			-	-	24	60	-	40	100	12	

Second Year (Semester –III)

Engineering Mathematics-III

BTSE301	Engineering Mathematics-II		BSC	3L-1T-0P	4 Credits
Teaching S	Scheme	Examination Scheme			
Lecture: 31	hrs./week	Continuous Assessment : 20 Marks			
Tutorial : 1 hr./week		Mid Semester Exam:20 Marks			
		End Se	emester E	Exam: 60 Marks (Duration 03 hrs.)

Pre-Requisites: None

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

1. Linear differential equations of higher order using analytical methods and numerical methods applicable to Control systems and Network analysis.

2. Transforms such as Fourier transform, Laplace transform and applications to Communication systems and Signal processing.

3. Vector differentiation and integration required in Electro-magnetic and Wave theory.

4. Complex functions, conformal mappings, contour integration applicable to Electrostatics, Digital filters, Signal and Image processing.

Course Outcomes:

On completion of the course, students will be able to:

CO1	Solve higher order linear differential equation using appropriate techniques for modeling and
	analyzing electrical circuits.
CO2	Solve problems related to Fourier transform, Laplace transform and applications to
	Communication systems and Signal processing.
CO3	Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical
	solutions of differential equations using single step and multi-step iterative
CO4	Perform vector differentiation and integration, analyze the vector fields and apply to
	Electromagnetic fields.
CO5	Analyze conformal mappings, transformations and perform contour integration of complex
	functions in the study of electrostatics and signal processing.
CO6	Analyze conformal mappings, transformations and perform contour integration of complex
	functions in the study of electrostatics and signal processing.

Course Contents:

Unit 1: Laplace Transform

[08 Hours]

Definition – conditions for existence ; Transforms of elementary functions ; Properties of Laplace transforms - Linearity property, first shifting property, second shifting property, transforms of functions multiplied by tn, scale change property, transforms of functions divided by t, transforms of integral of functions, transforms of derivatives ; Evaluation of integrals by using Laplace transform ; Transforms of some special functions- periodic function, Heaviside-unit step function, Dirac delta function.

ſ

Unit 2: Inverse Laplace Transform

Introductory remarks ; Inverse transforms of some elementary functions ; General methods of finding inverse transforms ; Partial fraction method and Convolution Theorem for finding inverse Laplace transforms ; Applications to find the solutions of linear differential equations and simultaneous linear differential equations with constant coefficients

Unit 3: Fourier Transform

Definitions – Integral transforms ; Fourier integral theorem (without proof) ; Fourier sine and cosine integrals ; Complex form of Fourier integrals ; Fourier sine and cosine transforms Properties of Fourier transforms ; Parseval's identity for Fourier Transforms.

Unit 4: Partial Differential Equations and Their Applications

Formation of Partial differential equations by eliminating arbitrary constants and functions; Equations solvable by direct integration; Linear equations of first order (Lagrange's linear equations); Method of separation of variables – applications to find solutions of one dimensional heat flow equation, and one dimensional wave equation (i.e.)

Unit 5: Functions of Complex Variables

Analytic functions; Cauchy- Riemann equations in Cartesian and polar forms; Harmonic functions in Cartesian form; Cauchy's integral theorem; Cauchy's integral formula; Residues; Cauchy's residue theorem (All theorems without proofs).

Text Books

1. Higher Engineering Mathematics by B. S. Grewal, Khanna Publishers, New Delhi.

2. Higher Engineering Mathematics by H. K. Das and Er. Rajnish Verma, S. Chand & CO. Pvt. Ltd., New Delhi.

3. A course in Engineering Mathematics (Vol III) by Dr. B. B. Singh, Synergy Knowledgeware, Mumbai.

4. Higher Engineering Mathematics by B. V. Ramana, Tata McGraw-Hill Publications, New Delhi.

Reference Books

1. Advanced Engineering Mathematics by Erwin Kreyszig, John Wiley & Sons, New York.

2. A Text Book of Engineering Mathematics by Peter O' Neil, Thomson Asia Pte Ltd., Singapore.

3. Advanced Engineering Mathematics by C. R. Wylie & L. C. Barrett, Tata Mcgraw-Hill Publishing Company Ltd., New Delhi.

4. Integral Transforms and their Engineering Applications by Dr. B. B. Singh, Synergy Knowledge ware, Mumbai.

5. Integral Transforms by I. N. Sneddon, Tata McGraw-Hill, New York.

[07 Hours]

[07 Hours]

[07 Hours]

[07 Hours]

Second Year (Semester –III)

An Introduction to Artificial Intelligence

BTSE302	An Introduction to Artificial Intelligence		PCC1	3L- 1T - 0P	4 Credits
		T	G 1		

Teaching Scheme	Examination Scheme
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks
Tutorial: 1 hr./week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Pre-Requisites: None

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. To provide a strong foundation of fundamental basics of Artificial Intelligence.
- 2. Demonstrate awareness and fundamental understanding of various applications of AI techniques.
- 3. Apply Artificial Intelligence techniques for problem solving.

Course Outcomes:

On completion of the course, students will be able to:

CO1	Discuss Meaning, Scope and Stages of Artificial Intelligence
CO2	Understand and Implement Problem Space and Search Strategies for Solving problems.
CO3	Discuss the Search Techniques and Knowledge Representation.
CO4	Apply search for solving Constraint Satisfaction Problems and Game-playing.
CO5	Discover the Application of Artificial Intelligence and Analyze Impact of AI on Society

Course Contents:

Unit No 1: Introduction:

What Is AI? The Foundations of Artificial Intelligence, The History of Artificial Intelligence, The State of the Art. Introduction: Philosophy of AI, Definitions, AI Future. Stages of AI. (ANI, AGI ASI with examples).

Intelligent Agents: Agents and Environments Good Behavior: The Concept of Rationality, The Nature of Environments, The Structure of Agents.

Unit No 2: State Space Search

Generate and test, simple search, Depth first search (DFS), Breadth First search (BFS), Comparison, Quality of Solution, Depth Bounded DFS, Depth First Iterative Deepening.

Unit No 3: Heuristic Search & Randomized Search[6 Hours]Heuristic Search:[6 Hours]

Heuristic Functions, Search Techniques: Best-first search, Hill climbing, Local Maxima, Solution Space Search, Variable Neighbourhood Descent, Beam Search, Tabu Search, Peak to peak method.

[6 Hours]

Randomized Search:

Population Based Methods: Escaping Local Optima, Iterated Hill Climbing, Simulated Annealing, Genetic Algorithms, Neural Network, Emergent Systems, Ant Colony Optimization.

Unit No 4: Optimal Path Finding

Brute Force, Branch & Bound, Refinement Search, Dijkstra Algorithm, Algorithm A*, Admissible A*, Iterative Deepening A*, Recursive Best First Search, Pruding the CLOSED List, Pruning the OPEN List, Conquer Beam Stack Search.

Unit No 5: Game Playing & Automated Planning: [6 Hours]

Game Playing: Game Theory, Board Games and Game Trees, Algorithm Minimax, AlphaBeta and Algorithm SSS*, B* search.

Automated Planning: Domain Independent Planning, Blocks World, Forward & Backward Search, Goal Stack Planning, Plan Space Planning

Unit No 6: Constraint Satisfaction

N Queens, Constraint Propagation, Scene labelling, Higher order consistency, Algorithm backtracking, Look-head strategies, Strategic retreat.

Text Books

- 1. Deepak Khemani, "A First Course in Artificial Intelligence", McGraw-Hill Education, 2013.
- 2. Eugene, Charniak, Drew Mcdermott, "Introduction to artificial intelligence", Addison Wesley, 1985.
- 3. Elaine Rich, Kevin Knight, Shivashankar B Nair:Artificial Intelligence, Tata CGraw Hill 3rd edition. 2013.
- 4. Stuart Russel, Peter Norvig: Artificial Intelligence A Modern Approach, Pearson 3rd edition 2013.

Reference Books

- 1. Peter Norvig, Artificial Intelligence: A Modern Approach, Third Edition.
- Herbert A. Simon, "The Sciences of the Artificial ", MIT Press, 3rd Edition (2nd Printing), 1995.
 Tim Jones, "Artificial Intelligence Application Programming", Dreamtech Publication.
- 3. George F. Luger, "Artificial Intelligence-Structures and Strategies For Complex Problem Solving", Pearson Education / PHI, 2002.
- 4. Prolog Programming for A.I. by Bratko, TMH

[6 Hours]

Semester –III

Programming, Data Structure and Algorithm

BTSE303	Programming Data Structure and	PCC2	3L-1T-0P	4 Credits
	Algorithm			

Teaching Scheme	Examination Scheme
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks
Tutorial: 1 hr./week	Mid Semester Exam:20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Pre-Requisites: None

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

1. Introduce the fundamental concept of Python programming to the students

2. Understand various data structures in Python and write algorithms and programs using them

3. Compare alternative implementations of data structures with respect to performance

4. Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing

Course Outcomes:

On completion of the course, students will be able to:

CO1	Write programs using basic concepts of Python Programming
CO2	Implement algorithms for arrays, linked structures, stacks, queues, trees, and graphs
CO3	Write programs that use arrays, linked structures, stacks, queues, trees, and graphs
CO4	Compare and contrast the benefits of dynamic and static data structures implementation
CO5	Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing

Course Contents:

Unit 1: Introduction to Programming

[06 Hours]

Introduction to Programming, Why Programming, What is a Program? Problem Solving, Algorithms and Data Structure

Introduction to Programming, Variables, Data Types, Input-Output Statements, Indentation, Operators- Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations.

Control Flow- if, if-elif-else, for, while break, continue, pass

Collections- String, Lists, Tuples, Dictionaries, Sets, Map

Unit 2: Functions & Object Oriented Programming using Python [06 Hours]

Functions- Built-in and User defined functions, Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function- Global and Local Variables, Recursions

Need for OOP, Classes and Objects, OOP Concepts, Constructor, Class Diagram, Encapsulation, Statics, Relationship, Inheritance, and Abstract Classes, Exception Handling

Unit 3: Data Structures in Python

ADT- Defining the ADT, Using the ADT, Pre conditions and post conditions

Introduction to Data Structures, Types of Data Structures, Arrays- Need for array, Array ADT, Implementing array, 2-D arrays,

Linked Structures- Singly Linked List & Operations with algorithms, Application-Polynomials, Doubly Linked Lists, Circular Linked List

Stacks- Stack ADT, Implementing the stack- using Python List and using a linked list, Stack Applications- Evaluating Postfix expressions

Queues- Queue ADT, Implementing the queue- using Python List and using a linked list, Priority Queue, Applications of Queues

Unit 4: Non-Linear Data Structures in Python

Binary Trees- Tree Structure, Properties, Implementation, Tree Traversals, Heaps-Definition, Implementation, Heap Sort

Binary Search Trees- Operations and Algorithms (searching, insertion, deletion, min, max),

AVL Tree-Insertions, deletions, implementation

Hash Tables- Hashing techniques, Hash functions, Applications

Unit 5: Searching & Sorting Algorithms

Search Algorithms- Linear Search Algorithm, Binary Search Algorithm,

Comparison Sort Algorithms- Introduction, Selection Sort, Insertion Sort, Bubble Sort, Merge Sort, Quick Sort

Unit 6: Algorithmic Techniques and Analysis

Algorithm Technique- Greedy Approach, Dynamic Programming, Complexity Analysis of Algorithms- Introduction, Analysis of Algorithms, Big-O Notation, Evaluating the Python List.

Text Books / Reference Books

1. Data Structures and Algorithms Using Python, Rance D. Necaise

2. Python for Everybody, Exploring Data Using Python 3, Dr. Charles R. Severance

3. Data Structures and Algorithms in Python, Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser.

[08 Hours]

[06 Hours]

[04 Hours]

Semester –III

Digital Logic & Signal Processing

BTSE304 Digital Logic & Signal Process	ing ESC 3L-1T-0P 4 Credits		
Teaching Scheme	Examination Scheme		
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks		
Tutorial: 1 hr/week	Mid Semester Exam:20 Marks		
	End Semester Exam: 60 Marks (Duration 03 hrs.)		

Pre-Requisites: None

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

1. To acquaint the students with the fundamental principles of two-valued logic and various devices used to implement logical operations on variables.

2. To classify signals and systems into different categories.

3. To analyze Linear Time Invariant (LTI) systems in time and transform domains.

4. To build basics for understanding of courses such as signal and image processing, computer vision, Machine Learning and Deep Learning.

Course Outcomes:

On completion of the course, students will be able to:

CO1	Use the basic logic gates and various reduction techniques of digital logic circuit in detail
CO2	Understand mathematical description and representation of various signals and systems.
CO3	Develop input output relationship for linear shift invariant system and understand the convolution operator for discrete time system.
CO4	Understand use of different transforms and analyze the discrete time signals and systems.
CO5	Understand the concept of correlation, regression and spectral density.

Course Contents:

Unit 1: Number System and Boolean Algebra

[06 Hours]

Digital Signal, Digital logic circuits: AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR.

Boolean algebra and theorems.

Number System: Binary, Octal, Decimal, and Hexadecimal. Binary Arithmetic (addition, subtraction, multiplication, division), 1's & 2's compliment.

Codes: Binary, Gray, BCD, Excess-3, Octal, Hexadecimal code.

Unit 2: Introduction to Signals

Introduction and Classification of signals: Definition of signal and systems, Continuous time and discrete time signal, Classification of signals as even, odd, periodic and non-periodic, deterministic and non-deterministic, energy and power, elementary signals used for testing:

exponential, sine, impulse, step and its properties, ramp, rectangular, triangular, signum, sinc Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration (Accumulator for DT), time scaling, time shifting and time folding. Sampling Process.

Unit 3: Systems

Systems: Definition, Classification: linear and non-linear, time variant and invariant, causal and non-causal, static and dynamic, stable and unstable, invertible.

System modeling: Input-output relation, definition of impulse response, LTI systems, convolution integral, computation of convolution integral using graphical method, Properties of convolution.

Unit 4: Discrete Fourier Transform

DTFT, Definition, Frequency domain sampling, DFT, Properties of DFT, circular convolution, linear convolution, FFT, decimation in time and decimation in frequency using Radix-2 FFT algorithm.

Unit 5: Z transform

Need for transform, relation between Laplace transform and Z transform, between Fourier transform and Z transform, Properties of ROC and properties of Z transform, Inverse Z transform, Power series method, partial fraction expansion method, Solution of difference equations.

Unit 6: Correlation and Spectral Density

Introduction of correlation and correlogram, the correlation function: analogy between correlation and convolution, auto-correlation, properties of auto-correlation, Cross-correlation: properties of cross correlation

Introduction of Spectral density, ESD, Properties of ESD, PSD, Properties of PSD.

Text Books

- Dr. S. L. Nalbalwar, A.M. Kulkarni and S.P. Sheth, "Signals and Systems", 2nd Edition, Synergy Knowledgeware, 2017
- 2. Nagoor Kanni "Signals and Systems", 2nd edition, McGrawHill.

Reference Books

- 1. R. P. Jain, Modern digital electronics. 3rd edition, 12threprint Tata McGraw Hill Publication, 2007.
- 2. Alan V. Oppenheim. Alan S. Willsky and S. Hamid Nawab, "Signals and Systems", PHI
- 3. A.V. Oppenheim and Schafer, Discrete Time Signal Processing, Prentice Hall, 1989.
- 4. John G. Proakis and D.G. Manolakis, Digital Signal Processing: Principles, Algorithms And Applications, Prentice Hall, 1997.
- 5. S.K.Mitra, Digital Signal Processing: A computer based approach.TMH
- 6. ShailaApte, "Signals and Systems-principles and applications", Cambridge University press, 2016.

[06 Hours]

[06 Hours]

[06 Hours]

Semester –III

Building Essential Language and Life Skills

|--|

Teaching Scheme	Examination Scheme
Lecture: 02 hrs./week	Continuous Assessment : 20 Marks
	Mid Semester Examination : 20 Marks
	End Semester Examination: 60 Marks (Duration 3 hrs.)

Pre-Requisites: None

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. Language skills, grammar, phonology, and strong vocabulary for effective use of language.
- 2. Comprehensive reading of different technical and non-technical material, business writing, listening skills, and speaking skills required for professional career development.
- 3. Self-management, self-awareness, self-analysis, positive attitude, emotional intelligence, decision making, problem solving attitude, time management and goal setting.
- 4. Interpersonal communication, relationship building, conflict resolution, being empathetic, ability to negotiate well, assertiveness and handling peer pressure.

Course Outcomes:

On completion of the course, students will be able to:

1		
CO1	Use language correctly and confidently without committing grammatical mistakes.	
CO2	Read different technical material with comprehension and write business letters and	
	applications.	
CO3	Utilize the listening skills for getting engaged in situational speaking in a productive	
	way.	
CO4	Manage 'self' for grooming the professional career by being ready to take the	
	responsibilities and career challenges.	
CO5	Develop strong interpersonal relations at the professional and social spheres by being a	
	good team player.	

Course Contents: Unit 1: Language Efficiency

[04 Hours]

Language – Concept of language, Roles of language, Functions of language, use of language effectively; Grammar – Sentence Formation, Tenses, adverbial forms, articles, prepositions, subject verb agreement, Common Errors, Vocabulary Building (exercises by using dictionary and library books); Change the voice.

Unit 2: Reading and Writing Skills

Reading skills – SQW3R Method and Note-taking, different types of reading, reading different technical and non-technical material (exercises reading – comprehension passages), ways to improve reading skills,

Writing skills – writing emails, notices, office orders, agenda of the meeting, minutes of the meetings, Business letters, job application and resume writing.

Unit 3: Listening and Speaking Skills

Listening skills, types of listening, techniques improve listening skills, Exercises of comprehension through listening, Verbal and non-verbal communication, Pronunciation – Representative Pronunciation, Articulation of Sounds in English with transcriptions, Effective ways to develop speaking skills, Speaking at the situations (Communicative skill – style of communication, engage in communication in an analytical and creative manner).

Unit 4: Self-Management Skills

Self-Awareness and Self-analysis, Emotional intelligence (EQ), Attitude building, Thinking Skills (inference, prediction, analysis and critical thinking), Problem solving skill, Decision Making, Time Management, Goal Setting.

Unit 5: Interpersonal Skills

Interpersonal Communication, Humour in communication (definition, humor at workplace), Interpersonal Relations, Conflict Resolution, Relationship building, understanding multiculturalism, Questioning Techniques, Leadership Skills.

Unit 6: Developing People Skills

Definition of People skills, Types of People, How to say 'No', What makes other dislike you? What makes other like you? Empathy, Assertiveness, Negotiation Skills, Team working skills, Handling Peer Pressure

Text Books / Reference Books

- 1. Effective Technical Communication. Ashraf Rizvi. Mac Grall Hill Edu. Chennai, 2018.
- 2. English for Engineers and Technologists: A Skill Approach, Pub. Orient BlackSwan
- 3. Communicative English, E. Suresh Kumar & P. Sreehari, Orient BlackSwan
- 4. Interpersonal Skills at Work, John Hayes
- 5. Martin Hewings. Advanced Grammar in Use. Cambridge University Press, 2013.
- 6. Michael Swan. Practical English Usage. 3rd ed. OUP, 2005.
- 7. John Seely. The Oxford Guide to Effective Writing and Speaking. OUP, 2005

[04 Hours]

[04 Hours]

[04 Hours]

[04 Hours]

[04 Hours]

Semester –III

An Introduction to Artificial Intelligence Lab

BTSE 306	An Introduction to Artificial Intelligence Lab	LC	0L-0T-2P	1 Credits	
----------	---	----	----------	-----------	--

Teaching Scheme	Examination Scheme
Practical: 02 hrs./week	Continuous Assessment 1: 30 Marks
	Continuous Assessment 2: 30 Marks
	End Semester Examination: 40 Marks

List of Practical/Tutorial

[Minimum 8]

Software Tools: Programming languages, namely Java, Python, C++, Lisp, and Prolog, is highly recommended for students to use when completing their assignments and/or practical's for this course.

- 1. Study of Java/Python/C++/ Lisp/ PROLOG.
- 2. Write a program to solve 8 queens problem.
- 3. Solve any problem using depth first search.
- 4. Solve any problem using breadth first search.
- 5. Solve 8-puzzle problem using best first search.
- 6. Write a program to solve map coloring problem using CSP.
- 7. Write a program to solve Tic-Tac-Toe using Min-Max search.
- 8. Solve traveling salesman problem.
- 9. Write a program for Alpha–Beta Pruning.

Note:

- 1. Open Source tools and technology use for programs
- 2. Lab should be in scope of hands of experience and practice related program must
- 3. Add case study and Live project experience if any related contents

Semester –III

Programming, Data Structure and Algorithm Lab

BTSE 307	Programming, Data Structure and Algorithm Lab		LC	0L-0T-2P	1 Credits
Teaching Scheme		Examina	tion Sche	me	
Practical: 02 hrs./week		Continuo	ous Assessi	nent 1: 30 Mark nent 2: 30 Mark nination: 40 Mar	S

Software Tools: Programming languages Python and Opens Source tools must and highly recommended for students to use when completing their assignments and/or practical's for this course.

List of Practical

Downloading and installing Python gcd in Python as start of lab for hands on laboratory

- 1) Write code and understand the concept Variable, Data Type and Data Object in python.
- 2) Write code and understand the concept List, Tuple, and Array in python.
- 3) Write code and understand the concept Loop and Function in python.
- 4) Write code and understand the concept Classes and Objects in python.
- 5) Write code and understand the concept Constructor and Relationship
- 6) Write code and understand the concept Inheritance and Exception Handling in python.
- 7) Write code and understand the concept List in data Structure
- 8) Write code and understand the concept Queue in data Structure
- 9) Write code and understand the concept Array in data Structure
- 10) Write code and understand the concept Graphs, Trees in data Structure
- 11) Write code and understand the concept Hashing, Hast Tables in data Structure
- 12) Write code and understand the concept Search Algorithms (Any two)
- 13) Write code and understand the concept Sorting Algorithms (Any two)
- 14) Write code and understand the concept Algorithm Technique on Greedy Approach

Note:

- 1. Open Source tools and technology use for programs
- 2. Lab should be in scope of hands of experience and practice related program must
- 3. Add case study and Live project experience if any related contents

Semester –III Seminar

BTSE 308	SEMINAR	Seminar	0L-0T-4P	2 Credits
----------	---------	---------	----------	-----------

Guidelines for Seminar

The students shall study in group of two or three members on some special topic beyond the scope of the syllabus under the subjects of Artificial Intelligence, Data Science, Electronics Engineering and Computer Science Engineering or inter discipline branch from current literature, by referring the current technical journal or reference books, under the guidance of the teacher. The students shall prepare his report and deliver talk on the topic for other students of his class in the presence of his guide and internal examiner. The student is permitted to use audio-visual aids or any other such teaching aids.

Continues Assessment:

The Continues Assessment for this head will consists of the report written in a technical reporting manner and presentation of the talk on the subject and will be assessed by the internal examiner appointed by the HOD of concern department of the institution.

Semester –III Internship - I

BTSE 309	Field Training / Internship / Industrial	Internship	Audit	
	Training			

Guidelines for Internships

Guidelines for Field Training / Internship / Industrial Training Industrial Training:

- 1. To apply for a suitable Industrial Training, submit an application form to respective Organization concerned one semester before the Industrial Training Programmed commences.
- 2. Student can also apply through online platforms such as Internshala for industrial training.
- 3. Submit one copy of the offer letter for the Industrial Training to the Head of the department or Faculty coordinator (Industrial Training).
- 4. To complete the Industrial Training process within the specified time based on the Industrial Training Programme schedule.
- 5. Assessment within the Industrial Training context aims to evaluate the student's work quality and appropriateness to the field of study with reference to the learning outcomes of the Industrial Training Programme.
- 6. Evaluation of the students' performance should be done in the next upcoming semester.
- 7. Those students who fails, they can also complete online certification courses which are available at free of cost on various MOOC platforms.

Semester –IV Probability Theory and Random Processes

BTSE401	Probability Theory and Processes	Random	BSC	3L- 1T -0P	4 Credits
Teaching Scheme		Examina	ation Scł	neme	
Lecture: 3 hrs./week		Continuo	ous Asses	ssment : 20 Marks	
Tutorial : 1 hr./week		Mid Semester Exam:20 Marks			
		End Sem	nester Exa	am: 60 Marks (Du	ration 03 hrs.)

Pre-Requisites: None

Course Objectives:

1. To develop basic of statistics, probability and random variables.

2. The primary objective of this course is to provide mathematical background and sufficient experience so that the student can read, write, and understand sentences in the language of probability theory, as well as solve probabilistic problems in engineering and applied science.

Course Outcomes:

On completion of the course, students will be able to:

CO1	Understand the fundamental knowledge of the concepts of probability and have knowledge
	of standard distributions which can describe real life phenomenon
CO2	Understand the basic concepts of one and two dimensional random variables and apply in
	engineering applications
CO3	Apply the concept random processes in engineering disciplines
CO4	Understand and apply the concept of correlation and spectral densities
CO5	The students will have an exposure of various distribution functions and help in acquiring
	skills in handling situations involving more than one variable. Able to analyze the response
	of random inputs to linear time invariant systems

Course Contents:

UNIT 1: Introduction to Probability:

Definitions, scope and history; limitation of classical and relative-frequency-based definitions, Sets, fields, sample space and events; axiomatic definition of probability, Combinatorics: Probability on finite sample spaces, Joint and conditional probabilities, independence, total probability; Bayes'' rule and applications, Examples.

UNIT 2: Random variables:

Definition of random variables, continuous and discrete random variables, cumulative distribution function (cdf) for discrete and continuous random variables; probability density functions (pdf) and properties, Jointly distributed random variables, conditional and joint density and distribution functions, Function of one random variable, pdf of the function of one random variable; Function of two random variables; Sum of two independent random variables, Expectation: mean, variance and moments of a random variable, conditional expectation; covariance and correlation.

[07 Hours]

[07 Hours]

UNIT 3: Random vector and distributions:

Random vector: mean vector, covariance matrix and properties, Some special distributions: Uniform, Gaussian and Rayleigh distributions; Binomial, and Poisson distributions; Multivariate Gaussian distribution, Vector-space representation of random variables, linear independence, inner product, Schwarz Inequality, Moment-generating functions, Bounds and approximations: Tchebysheff inequality and Chernoff Bound.

UNIT 4: Sequence of random variables

Almost sure convergence and strong law of large numbers; convergence in mean square sense with examples from parameter estimation; convergence in probability with examples; convergence in distribution, Central limit theorem and its significance.

UNIT 5: Random process:

Random process: Probabilistic structure of a random process; mean, autocorrelation and auto - covariance functions, Stationarity: strict - sense stationary (SSS) and wide- sense stationary (WSS) processes, Autocorrelation function of a real WSS process and its properties, crosscorrelation function, Ergodicity and its importance, Power spectral density, properties of power spectral density, cross- power spectral density and properties; auto- correlation function and power spectral density of a WSS random sequence, examples with white - noise as input; Examples of random processes: white noise process and white noise sequence; Gaussian process; Poisson process, Markov Process.

Text Books

1. T. Veerrajan, "Probability, Statistics and Random Processes", Third Edition, McGraw Hill.

2. Probability and Random Processes by Geoffrey Grimmett, DavidStirzaker

3. Probability, random processes, and estimation theory for engineers by Henry Stark, John WilliamWoods.

4. H. Stark and J. Woods, ``Probability and Random Processes with Applications to Signal Processing," Third Edition, PearsonEducation

5. A. Papoulis and S. Unnikrishnan Pillai, "Probability, Random Variables and Stochastic Processes," Fourth Edition, McGrawHill.

Reference Books

1. Cooper. G.R., McGillem. C.D., "Probabilistic Methods of Signal and System Analysis", Oxford University Press, New Delhi, 3rd Indian Edition, 2012.

2. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes ", Tata McGraw Hill Edition, New Delhi, 2004.

3. Miller. S.L. and Childers. D.G., —Probability and Random Processes with Applications to Signal Processing and Communications ", Academic Press, 2004.

4. Stark. H. and Woods. J.W., —Probability and Random Processes with Applications to Signal Processing ", Pearson Education, Asia, 3rd Edition, 2002.

[07 Hours]

[07 Hours]

[07 Hours]

Semester –IV

Data Analysis

BTSE402 Data Analysis	PCC3 3L - 1T - 0P 4 Credits		
Teaching Scheme	Examination Scheme		
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks		
Tutorial : 1 hr./week	Mid Semester Exam:20 Marks		
	End Semester Exam: 60 Marks (Duration 03 hrs.)		

Pre-Requisites: Basics of Linear Algebra, Introduction, Probability and Statistics.

Course Objectives:

After completion of the course, students will learn:-

- 1. To obtain a Comprehensive knowledge of various tools and techniques for Data transformation and visualization
- 2. To learn the probability and probabilistic models of data science
- 3. To learn the basic statistics and testing hypothesis for specific problems
- 4. To learn about the prediction models
- 5. To give a hands-on experience with real-world data analysis

Course Outcomes:

On completion of this course, the student should be able to

CO1	Apply preprocessing techniques to convert raw data so as to enable further analysis
CO2	Apply exploratory data analysis and create insightful visualizations to identify patterns
CO3	Understand how to derive the probability density function of transformations of random
	variables and use these techniques to generate data from various distributions
CO4	Understand the statistical foundations of data science and analyze the degree of certainty
	of predictions using statistical test and models
CO5	Introduce machine learning algorithms for prediction and to derive insights
1	

Course Contents:

Unit 1: Statistical data and Concepts

The statistical Methods, Misuse, Misinterpretation and bias, Sampling and sampling size, Data preparation and cleaning, Missing data and data errors, Statistical error, Statistical Modeling, Computational Statistics, Inference, Bias, Cofounding, Hypothesis testing, Types of error, Statistical significance, Confidence Interval, Power and robustness, Degrees of freedom, Non parametric analysis.

Unit 2: Descriptive Statistics

Counts and specific values, Measure of central tendency, Measure of spread, Measure of distribution shape, Statistical indices, Moments, Key functions, Measures of complexity and model selection.

[06 Hours]

Unit 3: Data transformation and standardization

Box-Cox and power transforms, Freeman-Tukey (square root and arcsine) transforms, Log and Exponential transforms, Logit transforms, Normal transform.

Unit 4: Classical Tests

Goodness of fit tests: Anderson-Darling, Chi-square test, Kolmogorov-Smirnov, Ryan-Joiner, Shapiro-Wilk, Jarque-Bera, Lilliefors; Z- test: test of single mean, standard deviation known, Test of the difference between two means, standard deviation known, test for proportions, P; T-tests: test of single mean, standard deviation not known, Test of the difference between two means, standard deviation not known, test of regression coefficients; Variance test: Chi square test of single variable, F-test of two variables, test of homogeneity; Wilcoxon rank-sum/Mann-Whitney U test; Sign test.

Unit 5: Contingency Tables

Chi-square contingency table test, G contingency table test, Fisher's exact test, Measures of association, McNemar's test.

Unit 6: Analysis of Variance and Covariance

ANOVA: Single factor or one way ANOVA, Two factor or two-way and higher-way ANOVA, MANOVA, ANCOVA; Non Parametric ANOVA: Kruskal Wallis ANOVA, Friedam ANOVA test, Mood's median

Text Books

- 1. Dr. Michael J de Smith, Statistical Analysis Handbook, A Comprehensive guide to statistical concepts methods and tools, The Winchelsea Press, Drumlin Security Ltd, Edinburgh 2018 edition. <u>https://www.statsref.com/HTML/index.html</u>
- 2. Douglas C. Montgomery, George C. Runger, Applied Statistics and Probability for Engineers, Sixth Edition, Wiley, 2013
- 3. Dr.J.Ravichandran, Probability And Statistics For Engineers, First Edition, Wiley, 2010 Scientists

Reference Books

- 1. Jure Leskovek, Anand Rajaraman and Jeffrey Ullman. Mining of Massive Datasets. v2.1, Cambridge University Press. 2014. (free online)
- Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. ISBN 0262018020. 2013.
- 3. Foster Provost and Tom Fawcett. Data Science for Business: What You Need to Know about Data Mining and Data-analytic Thinking. ISBN 1449361323. 2013.
- 4. Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk From The Frontline. O'Reilly. 2014.

[06 Hours]

[06 Hours]

[06 Hours]

Semester –IV

Database Management System

BTSE403	Database Management System	PCC4	3L-1T-0P	4 Credits

Teaching Scheme	Examination Scheme
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks
Tutorial : 1 hr./week	Mid Semester Exam:20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Pre-Requisites: None

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

1. Fundamentals of Database Management Systems and types of DBMS used in data analysis

2. Understand various ways to organize, maintain and retrieve - efficiently, and effectively – information from different DBMS

3. Design and maintenance of the database systems

4. Discuss the computational efficiency of the principal algorithms for sorting, searching, and hashing

Course Outcomes:

On completion of the course, students will be able to:

CO1	Master the basic concepts of relational DBMS and its types.
CO2	Perform various types of operations on relational databases using DDL, DML, DCL in SQL
CO3	Understand the concept of how non-relational databases differ from relational databases from a practical perspective.
CO4	Master the basic concepts of designing NoSQL database management system.
CO5	Able to Identify what type of NoSQL database to implement based on business requirements

Course Contents:

Unit 1: Introduction to Databases

[08 Hours]

Introduction to Data and Database, Significance of Database Management System, Various Types of DBMS- relational & non-relational, Data Independence - The Three Levels Of Architecture - The External Level - Conceptual Level - Internal Level - Client/Server Architecture- System Structure, Instance and schema

Unit 2: Relational Database Management System

Data Models & Types, ER to Relational Mapping, Structure Of Relational Databases, Creation and Manipulation of Database using Basic SQL(DDL, DML,DCL,TCL) Normalization – Anomalies- Functional Dependency, Normal forms- 1NF, 2NF, 3NF, Boyce -Codd Normal Form

Unit 3: Non-Relational Database Management System

NOSQL Systems-Introduction to NoSQL, Disadvantages of NoSQL technology, NOSQL Systems, weakness of RDBMS, CAP theorem, Types of NoSQL Databases,

Key-value database-Key values database, More elements of key values database, Properties of Key-value store

Unit 4: Columnar & Document Databases

Columnar Databases with Apache Cassandra- Characteristics of a columnar database, Concepts of columnar databases, Cassandra Introduction and its use-cases, Implement a columnar database using Apache Cassandra

Introduction to Document databases, Document databases with MongoDB - Implement a document database with MongoDB

Unit 5: Graph Databases

Graph Databases - Graph databases, graph traversal and graph problems, graph data structures edge list, adjacency matrix, properties of graph model.

Implementation and systems - Reliable, maintainable and scalable, Different information systems

Unit 6: Future databases

Data Models and Storage- SQL- NoSQL, APIs- Return SQL, Advance Databases-PostgreSQL, RiakCouchDB, NEO4J, Redis, Future Databases— Revolution Revisited, Counter revolutionaries, Oracle HQ- Other Convergent Databases, Disruptive Database Technologies

Text Books

1. Abraham Silberchatz, Henry K.Forth, Sudharshan, "Database system Concepts" – (6th edition), McGraw Hill, 2010.

2. Guy Harrison, "Next Generation Databases", Apress, 2015.

3. Eric Redmond, Jim R Wilson, "Seven Databases in Seven Weeks", LLC. 2012

Reference Books

1. K. Pakhira, "Database Management System", Phi Learning Pvt. Ltd., 2012

2. MongoDB: The Definitive Guide, 2nd Edition , Powerful and Scalable Data Storage, By Kristina Chodorow, Publisher: O'Reilly Media

3. MongoDB Basics - EelDavid Hows,Peter Membrey,coPlugge, Publisher Apress - Ebook(free) https://it-ebooks.info/book/4527/

[08 Hours]

[10 Hours]

[08 Hours]

[06 Hours]

[08 Hours]

Semester –IV

Image Processing and Computer Vision

BTSE404	Image Processing and Computer	PCC5	3L-0T-0P	4 Credits
	Vision			

Teaching Scheme	Examination Scheme
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks
	Mid Semester Exam:20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Prerequisites: Nil

Course Objectives:

- 1. To let the students learn the fundamental principles on the aspects of interdisciplinary research including acquiring, processing, analyzing, understanding and utilizing high-dimensional visual data from the real world;
- 2. To equip the students with the knowledge of how to develop artificial intelligent systems which automate tasks that the human visual system can do;
- 3. To guide the students to understand the relevant state of art technologies and gain experience throughout a variety of case studies.

Course Outcomes:

On completion of the course, students will be able to:

CO1	To implement fundamental image processing techniques required for computer
	vision
CO2	Understand Image formation process
CO3	To perform morphological operations on image.
CO4	Extract features form Images and do analysis of Images
CO5	To develop applications using computer vision techniques

Course Contents:

Unit 1: Introduction to Digital Image Processing

[06 Hours]

Motivation & Perspective, Applications, Components of Image Processing System, Fundamentals Steps in Image Processing, Image digitization, Some basic relationships like Neighbors, Connectivity, Distance Measures between pixels, Image operation on pixel basis, Image geometry.

Unit 2: Image Enhancement

Image Enhancement: Basic Intensity Transformation: Image Negatives, Log transformation, Power law Transformation, Histogram processing, Histogram Equalization. Basics of Spatial Filters, Smoothening and Sharpening Spatial Filters, Combining Spatial Enhancement Methods.

Unit 3: Image Transformation

Image Transforms: Discrete Fourier transform(DFT), FFT, DCT, Walsh, Hadamard, Haar, Slant Transform.

Unit 4: Morphological operations and segmentation

Introduction, erosion, dilation, opening, closing, Hit or Miss, boundary extraction, hole filling, thinning, thickening, skeletonization, region growing, region splitting, region merging, region splitting and merging, segmentation by thresholding, watershed segmentation.

Unit 5: Local Image Features

Computing the Image Gradient: Derivative of Gaussian Filters; Representing the Image Gradient: Gradient-Based Edge Detectors, Orientations; Finding Corners and Building Neighborhoods: Finding Corners, Using Scale and Orientation to Build a Neighborhood; Describing Neighborhoods with SIFT and HOG Features.

Unit 6: Object Recognition

Pattern and pattern classes, Decision theoretic method: Matching, optimum statistical classifier, Object recognition methods, Shape correspondence and shape matching.

Text Books:

1. Computer Vision - A modern approach, by D. Forsyth and J. Ponce, Prentice Hall Robot Vision, by B. K. P. Horn, McGraw-Hill.

2. Introductory Techniques for 3D Computer Vision, by E. Trucco and A. Verri, Publisher: Prentice Hall.

3. R. C. Gonzalez, R. E. Woods. Digital Image Processing. Addison Wesley Longman, Inc., 1992.

4. Dhananjay K. Theckedath, Image Processing using MATLAB codes, Nandu Printers and Publishers Pvt. Ltd, Third edition.

Reference Books:

1. D. H. Ballard, C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, 1982.

- 2. Richard Szeliski, Computer Vision: Algorithms and Applications (CVAA). Springer, 2010
- 3. Image Processing, Analysis, and Machine Vision. Sonka, Hlavac, and Boyle. Thomson.
- 4. E. R. Davies, Computer & Machine Vision, Fourth Edition, Academic Press, 2012

5. Simon J. D. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012

6. Mark Nixon and Alberto S. Aquado, Feature Extraction & Image Processing for Computer Vision, Third Edition, Academic Press, 2012.

[06 Hours]

[06 Hours]

[06 Hours]

Semester –IV

Internet of Things & Embedded System

BTSE405A	Internet of Things & Embedded	PEC1	3L-0T-0P	3 Credits
	System			

Teaching Scheme	Examination Scheme
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks
	Mid Semester Exam:20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Prerequisites: Basics if microprocessor, microcontroller, C language

Course Objectives:

- 4. To get the understanding of the concepts of Internet of Things
- 5. To enable the students to build IoT applications.
- 6. To understand the various protocols in IoT and Networking.
- 7. To develop the essential programming skill required

Course Outcomes:

On completion of the course, students will be able to:

CO1	The use of concepts of IoT and its areas.
CO2	Understand the basics of C and NodeMCU
CO3	Understand the basics of Python & Raspberry Pi
CO4	Interacting with Web Services and IoT protocol
CO5	Apply the IoT in various applications.

Course Contents:

Unit-I: Introduction to IoT

Definition, characteristics of IoT, logical design of IoT, IoT communication models, IoT communication APIs: REST, Websocket, IoT Enabling Technologies: Wireless sensor networks, Cloud computing, Big data analytics, communication protocols, Embedded systems, IoT vs M2M.

Unit-II: Introduction to C and Node Mcu

C: Introduction, Data types, variable, operator, branches, loops, functions, Debugging and Optimization of C programs.

NodeMCU: 8266 Wi-Fimodule, hardware and pin diagram, Interface with Arduino IDE. Interfacing of analog and digital sensors.

[06 Hours]

Unit-III: Introduction to Python and Raspberry Pi

Python: Python IDE, Data types, variable, operator, branches, loops, functions, List, Dictionary, Writing to a File, Reading from a File, handling exceptions.

Raspberry Pi: Models of Raspberry pi, R Pi 3 hardware, GPIO pins, operating system for R pi3, Basic of Linux commands, configuring R pi3, Interfacing of Digital and Analog sensors.

Unit-IV : Interacting with Web Services

Configuring NodeMCU to connecting to server, NodeMCU interfacing with web services, configuring R pi 3 Wi-Fi and Ethernet, publishing and subscribing data from web using R pi 3, interfacing R Pi 3 with twitter and whatsapp.

Unit-V: IoT Protocols

UART, Wi-Fi, Ethernet, Bluetooth Low Energy (BLE), Message Queue Telemetry Transport (MQTT), Extensible Messaging and Presence Protocol (XMPP), Data Distribution Service (DDS), Advanced Message Queuing Protocol (AMQP).

Unit-VI: Case study and Applications of IOT

Smart cities, Home automation, Weather Monitoring, smart Grids, Inventory Management, Smart irrigation, Industrial internet, smart Wearables.

Text Books:

- 1. Get Started With ESP8266 Programming NodeMCU Using Arduino, Up skill Learning.
- 2. Internet of Things with Raspberry Pi 3, ManeeshRao, pack
- 3. Internet of Things with ESP8266, Marco Schwartz
- 4. Internet of Things with Arduino Cookbook, Marco Schwartz

Reference Books:

- 1. Internet of Things: A Hands-On Approach- Arsheep Bahga, Vijay Madisetti
- 2. Raspberry Pi Cookbook for Python Programmers by Tim Cox
- 3. Learning Internet of Things, Peter Waher

[06 Hours]

Semester –IV

Computer Architecture and Operation Systems

BTSE405B	Computer Architecture and Operation Systems	PEC1	3L-0T-0P	3 Credits		
Teaching Sc	heme E	Examination Scheme				
Lecture: 3 hrs./week		ontinuous .	Assessment : 20 Ma	arks		
		Mid Semester Exam:20 Marks				
	E	End Semester Exam: 60 Marks (Duration 03 hrs.)				

Pre-Requisites: None

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. To understand the structure, function and characteristics of computer systems
- 2. To identify the elements of modern instructions sets and their impact on processor design
- 3. To understand the services provided by and the design of an operating system.
- 4. Understand the structure, organization memory management.

Course Outcomes:

On completion of the course, students will be able to:

CO1	Understand the theory and architecture of central processing unit & Analyze some of the design issues in terms of speed, technology, cost, performance
CO2	Use appropriate tools to design verify and test the CPU architecture & Learn the concepts of parallel processing, pipelining and inter processor communication.
CO3	Understand the architecture and functionality of central processing unit & Exemplify in a better way the I/O and memory organization.
CO4	Describe and explain the fundamental components of a computer operating system
CO5	Define, restate, discuss, and explain the policies for scheduling, deadlocks, memory management, synchronization, system calls, and file systems.
CO6	Describe and extrapolate the interactions among the various components of computing systems and construct OS components: System calls, Schedulers, Memory management systems, Virtual Memory

Course Contents:

Unit 1: Introduction and Instruction Sets

Introduction: Concept of computer organization and architecture, Fundamental unit, Computer function and interconnection, CPU structure and function.

Instruction Sets: Characteristics, Types of operands, Types of operations, Assembly language, Addressing modes, Instruction format, Types of instruction, Instruction execution, Machine state and processor status, Structure of program, Introduction to RISC and CISC architecture.

Unit 2: Computer Arithmetic & Memory Organization

Computer Arithmetic: The arithmetic and logic Unit, Integer representation, Integer arithmetic, Floating point representation, Floating point arithmetic, Introduction of arithmetic co-processor.

Memory Organization: Internal Memory: Semiconductor main memory, Error correction, Advanced DRAM organization, Virtual memory systems and cache memory systems. External Memory: Organization and characteristics of magnetic disk, Magnetic tape, Optical memory, RAID, Memory controllers.

[06 Hours]

Unit 3: Control Unit & Input/ Output Organization:

Control Unit: Control unit operation: Micro-operations, Control of the processor, Hardwired implementation, Micro-programmed Control Unit, Basic concepts, Micro-instruction sequencing, Micro-instruction execution, Applications of micro-programming.

Input/ Output Organization: External devices, I/O module, Programmed I/O, Interrupt driven I/O, Direct memory access, I/O channels and processors, External interface. Instruction pipe-lining: Concepts. Parallel processing: Multiple processor organization, Symmetric multiprocessor, Cache coherence and the MESI protocol.

Unit 4: Introduction OS & Processes and CPU Scheduling:

Introduction and Operating system structures: Definition, Types of Operating system, Real Time operating system, System Components- System Services, Systems Calls, System Programs, System structure. Virtual Machines, System Design and Implementation, System Generations.

Processes and CPU Scheduling: Process Concept, Process Scheduling, Operation on process, Cooperating processes. Threads, Inter-process Communication, Scheduling criteria, scheduling Algorithms, Multiple-Processor Scheduling, Real-Time Scheduling, Scheduling Algorithms and performance evaluation.

Unit 5: Process Synchronization & Deadlocks

Process Synchronization: The critical-section problem, Critical regions, Synchronization Hardware, Semaphores, Classical Problems of synchronization, and Monitors Synchronizations in Solaris.

Deadlocks: Systems Model, Deadlock characterization, Methods for handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock, Combined approach to deadlock Handling.

Unit 6: Memory Management & Virtual Memory:

Memory Management: Basic concept, Logical and Physical address map, Memory allocation: Continuous Memory Allocation, Fixed and variable partition, Internal and external fragmentation and compaction, Paging: Principle of operation, Page allocation - Hardware support for paging, Protection and sharing, Disadvantages of paging.

Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU).

Text Books

- 1. William Stalling, Computer Organization and Architecture: Designing for Performance, Prentice Hall Publication, 8th Edition, 2009.
- 2. Hayes, Computer Architecture and Organization, McGraw-Hill Publication, 3rd Edition, 2012.
- Zaky, Computer Organization, McGraw-Hill Publication, 5th Edition, 2011 3.
- 4. Andrew S. Tanenbaum, Modern Operating System, PHI Publication, 4th Edition, 2015.

Reference Books

- 1. Hennessy and Patterson, Computer Architecture: A Quantitative Approach, Morgan and Kaufman Publication, 4th Edition, 2007.
- 2. Morris Mano, Computer System Architecture, Pearson Education India, 3rd Edition, 2007.
- 3. Mostafa Abd-El-Barr, Hesham El-Rewini, Fundamentals of Computer Organization and Architecture, Wiley Publication, 1st Edition, 2004.

[06 Hours]

[06 Hours]

[06 Hours]

Semester –IV

Cryptography and Network Security

BTSE405C	Cryptography and Network	PEC1	3L-0T-0P	3 Credits
	Security			

Teaching Scheme	Examination Scheme
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks
	Mid Semester Exam:20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Prerequisites: Concepts of Basics of Computer Networking

Course Objectives:

- 1. Describe how computer networks are organized with the concept of layered approach.
- 2. Describe how packets in the Internet are delivered.
- 3. Describe how routing protocols work.
- 4. Implement a simple LAN with hubs, bridges and switches.
- 5. Understand Cryptography & network security issues.

Course Outcomes:

On completion of the course, students will be able to:

CO1	Analyze the requirements for a given organizational structure and select the most
	appropriate networking architecture and technologies.
CO2	Analyze, specify and design the topological and routing strategies for an IP based
	networking infrastructure.
CO3	Analyze, specify and design Congestion control strategies for an IP based
	networking infrastructure.
CO4	Specify and identify deficiencies in existing protocols, and then go onto formulate
	new and better protocols.
CO5	Have a basic knowledge of the use of cryptography and network security.

Course Contents:

Unit-I: Introduction

[06 Hours]

Computer Networking: Components of communication system, Date representation, Networking Hardware, Network topologies, Network software, LAN, MAN, WAN. Overview of network model: ISO-OSI and TCP/IP. Network design issues, layered architecture. Communication Networks: Switching Techniques, circuit switching, Routing for circuit switching network, Packet switching, comparison of Circuit and Packet switching.

Unit II: Data Link Layer and Network Layer

Error detection and correction, Elementary data link protocols: A simplex stop and wait protocol, sliding window protocols. Network layer design issues, IPV4, IPV6, Routing algorithm, Congestion control algorithm, Quality of service.

Unit III: Transport Layer and Application Layer

Connectionless verses connection oriented services, UDP, TCP, SCTP, congestion control, DNS, Electronic mail-Architecture, user Agent, SMTP, POP and IMAP, File Transfer Protocol, WWW, HTTP.

Unit IV: Cryptography

Introduction, Cryptography components, Ancient Cryptography, Symmetric Key cryptography, Asymmetric Key cryptography: RSA and Diffie-Hellman, Applications

Unit V: Network Security

Message confidentiality, message integrity, message Authentication, Digital signaturecomparison, Need for keys, Key management, IPSecurity, SSL/TSL, PGP, firewalls.

Unit VI: ISDN

ISDN overview, ISDN Interfaces and Functions, ISDN physical layer, ISDN Data Link Layer, ISDN Network Layer, ISDN services, Broadband ISDN

Text Books :

- 1. Andrew Tenenbaum, "Computer Networks", 3rd and 4th Edition, Prentice Hall
- 2. Behrouz A. Forouzan, "Data Communication and Networking", 4th Edition, McGraw Hill
- 3. Willam Stallings, "ISDN, Frame Relay, ATM", Prentice Hall
- 4. Bansod, "Computer Networks", Wiley Publication

Reference Books :

- 1. D.Comer, "Computer Networks and Internet TCP/IP"
- 2. Willam Stallings, "Computer Networks", Prentice Hall
- 3. Willam Stallings, "Data and Computer Communications", 7th Edition Prentice Hall
- 4. Tularam M. Bansod, "Computer Networks", Dreamtech

[06 Hours]

[06 Hours]

[06 Hours]

[06 Hours]

Semester –IV

Programming in JAVA

	BTSE405D	Programming in JAVA	PEC1	3L-0T-0P	3 Credits
--	----------	---------------------	------	----------	-----------

Teaching Scheme	Examination Scheme
Lecture: 3 hrs./week	Continuous Assessment : 20 Marks
	Mid Semester Exam:20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Pre-Requisites: Basics of programming languages and Concepts of Object Oriented Programming languages.

Course Objectives:

After completion of the course, the students will be able to:

- 1. Apply object oriented features to real time entities.
- 2. Handle exceptions & implement multithreaded programs.
- 3. Implement database programming.
- 4. Design & implement GUI with event handling
- 5. Develop I/O & networking programs.

Course Outcomes:

On completion of the course, students will be able to:

CO1	To understand basics of JAVA
CO2	To use Packages & interfaces
CO3	To apply Exception Handling & Multithreaded Programming
CO4	To acquire Java Database Connectivity
CO5	To recognize Applet, Event Handling and AWT
CO6	To apply it for networking

Course Contents:

Unit 1: Introduction

[06 Hours]

Features of Java, Java Virtual Machine, Byte Code, JIT Compiler, Class fundamentals, Declaring objects, Nested and Inner Classes, Introducing Methods, Constructors, Garbage Collection, Overloading Methods, Using Objects as Parameters, Returning Objects, Access Control, Understanding static & final keyword, Inheritance Basics, Using Super, Method Overriding, Abstract Classes, Using final keyword with inheritance, Arrays, Vectors, Strings, Wrapper classes, Using Command-Line Arguments.

Unit 2: Packages & interfaces

Packages: Defining a Package, Finding Packages and CLASSPATH, A Short Package Example, Access Protection, Importing Packages, Study of java.lang & java.util packages, Interfaces: Defining an Interface, Implementing Interfaces, Variables in Interfaces, Extending Interfaces, Multiple Inheritance.

Unit 3: Exception Handling & Multithreaded Programming

Exception handling fundamentals, Exception Types, Using try-catch, Multiple try-catch clauses, Nested try statements, throw, throws, finally, Built-in Exceptions, creating your own exception subclasses, The Java Thread Model, The Main Thread, Creating a Thread, Creating Multiple Threads, Using isAlive() and join(), Thread Priorities, synchronization, Suspending, Resuming, and Stopping Threads

Unit 4: Java Database Connectivity

Introduction, Types of JDBC Drivers, Driver interface & DriverManager class, Connection Interface, Statement Interface, PreparedStatement, ResultSet, JDBC Program for executing Statements & processing ResultSet, Using PreparedStatement.

Unit 5: Applet, Event Handling and AWT

Applet: Applet Basics, An Applet Skeleton, Simple Applet Display Methods, Using the Status, Window, The HTML APPLET Tag, Passing Parameters to Applets, Event Handling: The Delegation Event Model, Event Classes, Sources of Events, Event, Listener Interfaces, Handling Mouse and Keyboard Events, Adapter Classes, Introduction to AWT, AWT classes, Window, Creating a Frame Window in an Applet, Working with Graphics

Unit 6: Input /Output & Networking

Input /Output: I/O Basics, Reading Console Input, Writing Console Output, The PrintWriter Class, Reading and Writing Files, The Stream Classes, The Byte Streams, The Character Streams, Object Serialization & deserialization, Networking: Networking Basics, The Networking Classes and Interfaces, TCP/IP Client, Sockets, TCP/IP Server Sockets, Datagrams

Text / Reference Books:

- 1. Herbert Schildt, The Complete Reference- Java2, (Seventh Edition), Tata Mc Graw Hill.
- 2. Steven Holzner, Java 2 Black Book, Dream Tech Press.
- 3. Deitel & Deitel, Java: How to Program, PHI.
- 4. Bert Bates, Kathy Sierra, Head First Java, O'Reilly Media, Inc.
- 5. E Balagurusamy, Programming with Java, Tata Mc Graw Hill.

[06 Hours]

[06 Hours]

[06 Hours]

[06 Hours]

Semester –IV

Data Analysis Lab

BTSE 406	3TSE 406 Data Analysis Lab			0L-0T-2P	1 Credits
Teaching Scheme		Examination Scheme			
Practical: 02 hrs./week		Continuous Assessment 1: 30 Marks			
		Continuous Assessment 2: 30 Marks			
		End Semester Examination: 40 Marks			

List of practicals:

- 1. Installing R and R Studio
- 2. Data types, mathematical operators and functions in R.
- 3. Vectors, Factors, Lists, Matrix, Data Frames in R.
- 4. Measurement of Central Tendency Mean, Median and Mode.
- 5. Measurement of Variation Range, IQR and Standard Deviation.
- 6. Descriptive Statistics Using psych Package.
- 7. One & two Sample z Test Using R
- 8. One & two Sample t Test Using R
- 9. Goodness of Fit Test Using R
- 10. Contingency Table Using R
- 11. Analysis of Variance (ANOVA) Using R
- 12. Central Limit Theorem Demonstration Using R
- 13. R Functions for Normal Distribution rnorm, pnorm, qnorm and dnorm
- 14. R Functions for Binomial Distribution rbinom, pbinom, qbinom and dbinom
- 15. R Functions for Poisson Distribution rpois, ppois, qpois and dpois

Semester –IV

Database Management System Lab

BTSE 407	Database Management System Lab		LC	0L-0T-2P	1 Credits
Teaching Sch	eme	Examination Scheme			
Practical: 02 h	rs./week	Continuous Assessment 1: 30 Marks Continuous Assessment 2: 30 Marks End Semester Examination: 40 Marks			CS .

List of practical:

1. Draw E-R diagram and convert entities and relationships to relation table for a college database.

- 2. Perform the following:
 - a) Viewing all databases,
 - b) Creating a Database,
 - c) Viewing all Tables in a Database,
 - d) Creating Tables (With and Without Constraints),
 - e) Inserting/Updating/Deleting Records in a Table,
- 3. Perform the following:
 - a) Altering a Table,
 - b) Dropping/Truncating/Renaming Tables,
 - c) Backing up / restoring a Database.
- 4. For a given set of relation schemes, create tables and perform the following
 - a) Simple Queries,
 - b) Simple Queries with Aggregate functions,
 - c) Queries with Aggregate functions (group by and having clause),
- 5. Perform queries with Date functions and String Functions
- 6. Perform queries with Math Functions, Join Queries- Inner Join, Outer Join and Subqueries-

With IN clause, With EXISTS clause

- 7. Implement a columnar database using Apache Cassandra
- 8. Implement a document database with MongoDB
- 9. Design and Implement any 5 query using MongoDB
- 10. Write a case study for various types of NoSQL databases.

Note:

- 1. Lab should be in scope of hands of experience and practice related program must
- 2. Add case study and Live project experience if any related contents

Semester –IV

Image Processing & Computer Vision Lab

BTSE 408	Image Processing & Cor Vision Lab	nputer	LC	0L-0T-2P	1 Credits
Teaching Sch	eme	Examination Scheme			
Practical: 02 h	rs./week	Continuous Assessment 1: 30 Marks Continuous Assessment 2: 30 Marks End Semester Examination: 40 Marks			S

List of practical:

- 1. Attributes of an Image
- 2. Import, Export and Conversion
- 3. Arithmetic, logical and statistical operations on image
- 4. Geometric Transformation (crop, resize, rotate, translate, etc.) on the image
- 5. Gray level transform (Intensity Transformation)
- 6. Histogram mapping & equalization, stretching
- 7. Image smoothing and sharpening.
- 8. Image Transformation (Frequency domain analysis)
- 9. Morphological operations
- 10. Image Segmentation.
- 11. Edge detection
- 12. Object Recognition

Note:

- 1. Open Source tools and technology use for programs
- 2. Lab should be in scope of hands of experience and practice related program must
- 3. Add case study and Live project experience if any related contents

Semester –IV

Project E	Based]	Learning	(PBL)) _]
	abcu I	Learning		/ 💵

BTSE 409	Project Based Learning (PBL) –I	PROJ	0L-0T-2P	1 Credits
----------	---------------------------------	------	----------	-----------

Guidelines for Project Based Learning – I:

The project should enable the students to combine the theoretical and practical concepts studied in his / her academics. The project work should enable the students to exhibit their ability to work in a team, develop planning and execute skills and perform analyzing and trouble shooting of their respective problem chosen for the project. The students should be able to write technical Report, understand the importance of teamwork and group task.

The students will get knowledge about literature survey, problem definition, its solution, and method of calculation, trouble shooting, costing, application and scope for future development. **Project work:**

The project work is an implementation of learned technology. The knowledge gained by studying various subjects separately supposed to utilize as a single task. A group of 03/04 students will have to work on assigned work. The topic could be a product design, specific equipment, live Industrial problem etc. The project work involves experimental / theoretical / computational work. It is expected to do necessary literature survey by referring current journals belonging to Information Technology reference books and internet. After finalization of project, requisites like equipment's, data, tools etc. should be arranged.

Project Activity:

The project groups should interact with guide, who in turn advises the group to carry various activities regarding project work on individual and group basis. The group should discuss the progress every week in the project hours and follow further advice of the guide to continue progress. Guide should closely monitor the work and help the students from time to time. The guide should also maintain a record of continuous assessment of project work progress on weekly basis.

Steps for Projects:

1. Submission of project/problem abstract containing problem in brief, requirements, broad area, applications, approximate expenditure if required etc.

- 2. Problem definition in detail.
- 3. Literature survey.
- 4. Requirement analysis.
- 5. System analysis (Draw DFD up to level 2, at least).
- 6. System design, Coding/Implementation (20 to 30%).

Note: Project step may change depending on domain and project related to Artificial Intelligence and Data Science important, Understand Problem, Read the data and Preprocess and Implementation and Visualization and Results Includes and Important

Semester –IV Internship - II

BTSE 410	Field Training / Internship / Industrial	Internship	Audit
	Training		

Guidelines for Internships

Guidelines for Field Training / Internship / Industrial Training Industrial Training:

- 1. To apply for a suitable Industrial Training, submit an application form to respective Organization concerned one semester before the Industrial Training Programmed commences.
- 2. Student can also apply through online platforms such as Internshala for industrial training.
- 3. Submit one copy of the offer letter for the Industrial Training to the Head of the department or Faculty coordinator (Industrial Training).
- 4. To complete the Industrial Training process within the specified time based on the Industrial Training Programme schedule.
- 5. Assessment within the Industrial Training context aims to evaluate the student's work quality and appropriateness to the field of study with reference to the learning outcomes of the Industrial Training Programme.
- 6. Evaluation of the students' performance should be done in the next upcoming semester.
- 7. Those students who fails, they can also complete online certification courses which are available at free of cost on various MOOC platforms.